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Abstract

The heat transfer problem of a body moving in opposition to a ¯owing ¯uid in a channel is investigated
numerically. This problem belongs to a class of the moving boundary problems and an arbitrary Lagrangian±

Eulerian method with a Galerkin ®nite element method is adopted to analyze this problem. Several di�erent moving
velocities of the body and Reynolds numbers are taken into consideration. The results show that the ¯uid
simultaneously replenishes the vacant space induced by the movement of the body and new recirculation zones are

formed around the body. These phenomena are quite di�erent from those of the body ®xed in the ¯owing ¯uid.
Heat transfer rates of the body are enhanced remarkably as the body moving in opposition to the ¯owing ¯uid. In
the computing range, the mean global Nusselt number Nu can be estimated by an equation of

0:664�Re Vb�1=2 ÿ 1:34: 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The ¯ow and thermal ®elds induced by the inter-

action between a ¯owing ¯uid and a moving body are

very important for application in many engineering

problems. From a relative velocity viewpoint, the mov-

ing body is traditionally and conveniently regarded as

the stationary body in the ¯owing ¯uid, in which the

relative velocity between the moving body and the

¯uid is considered. However, the ¯uid near the body

must replenish the vacant space induced by the move-

ment of the body. Strictly speaking, the dynamic

problem of the moving body regarded as the stationary

body in the ¯owing ¯uid is di�erent from that of the

body moving in the ¯owing ¯uid. Hence, the later situ-

ation mentioned above is rarely analyzed by either the

Lagrangian or Eulerian description method solely, and

can be classi®ed into a kind of the moving boundary

problems.

A skillful method named coupled Lagrangian±Euler-

ian method, which combined the characteristics of the

Lagrangian and Eulerian description methods, was

proposed by Noh [1] to solve a two-dimensional hy-

drodynamics problems with moving ¯uid boundaries.

Later, Hirt et al. [2] adopted the concept of the

coupled Lagrangian±Eulerian method and renamed it

as the arbitrary Lagrangian±Eulerian (ALE) method

to solve compressible and incompressible ¯ow ®elds,

and the basic methodology, stability, accuracy, and re-

zoning of the ALE method were described in detail.

Hughes et al. [3], Huerta and Liu [4], and Ramaswamy

[5] adopted the ALE method to solve free surface

problems of incompressible viscous ¯uid ¯ow, and the

kinematic theory of the ALE method was discussed

clearly.

In addition, the ALE method was applied to

simulate the ¯uid±structure interaction [6±11], ma-
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terial forming process [12±14], and food freeze±dry-

ing process [15]. The results obtained by the ALE

method were consistent with previous experimental

results.

Most of the literature mentioned above investi-

gated the variation of the ¯ow ®elds only. However,

in many industrial applications, such as heat

exchangers, electric cooling and ¯uid machinery, the

variations of both the ¯ow and thermal ®elds

induced by the interaction of the ¯uid and moving

body are important; little attention has been focused

on this subject.

Consequently, in this paper the ALE method is

adopted to investigate numerically the variation of the

¯ow and thermal ®elds induced by a body moving in

opposition to a ¯owing ¯uid. For avoiding the distor-

tion and deformation of the computational meshes due

to a long movement of the body, an interpolation
method is used to reconstruct the distorted and
deformed computational meshes. A Galerkin ®nite el-
ement method in conjunction with a backward di�er-

ence scheme to deal with the time terms is adopted to
solve the governing equations. The results show that
heat transfer rates are increased and the variations of

the ¯ow ®eld are drastic. The mean global Nusselt
numbers in the computing range can be estimated by
an equation of the form Nu � 0:664�Re Vb�1=2 ÿ 1:34:

2. Physical model

The physical model used in this study is sketched in

Nomenclature

h dimensional height of the channel, m
H dimensionless height of the channel �H � h=i)
d dimensional distance from the outlet of the

channel to the bottom surface of the body, m
D dimensionless distance from the outlet of the

channel to the bottom surface of the body

�D � d=i�
L dimensionless length of the body �L � i=i�
Ni shape function

ne number of elements
Nu average global Nusselt number of the body
Nu mean global Nusselt number of the body
NuX local Nusselt number on the top or bottom

surface of the body
NuX average local Nusselt number on the top or

bottom surface of the body

NuY local Nusselt number on the lateral surface of
the body

NuY average local Nusselt number on the lateral

surface of the body
p dimensional pressure, N mÿ2

p1 reference pressure, N mÿ2

P dimensionless pressure �P � �pÿ p1�=rv 20 �
Pr Prandtl number
Re Reynolds number
t dimensional time, s

T dimensional temperature, 8C
Tb dimensional temperature of the body, 8C
T0 dimensional temperature of the inlet ¯uid, 8C
u, v dimensional velocities in x and y directions,

m sÿ1

U, V dimensionless velocities in X and Y directions

�U � u=v0, V � v=v0)
v0 dimensional velocity of the inlet ¯uid, m sÿ1

vb dimensional moving velocity of the body in y-
direction, m sÿ1

Vb dimensionless moving velocity of the body in

Y-direction �Vb � vb=v0�
v̂ dimensional mesh velocity in y-direction, m

sÿ1

V̂ dimensionless mesh velocity in Y-direction
�V̂ � v̂=v0�

w dimensional width of the channel, m

W dimensionless width of the channel �W � w=i)
x, y dimensional Cartesian coordinates, m
X, Y dimensionless Cartesian coordinates

�X � x=i, Y � y=i)

Greek symbols
a thermal di�usivity, m2 sÿ1

f computational variables
i dimensional length of the body, m
l penalty parameter

n kinematic viscosity, m2 sÿ1

y dimensionless temperature �y � �Tÿ
T0�=�Tb ÿ T0��

t dimensionless time �t � tv0=i�
Dt dimensionless time step

Superscripts

(e) element
m iteration number
T transpose matrix

Other
[] matrix

{} column vector
hi row vector
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Fig. 1. There is a vertical channel with height h and
width w, respectively. A square body with length i is

set within the channel. FH and EG are the top and
bottom surfaces, respectively, FE and HG are the lat-
eral surfaces. The distance from the outlet of the chan-

nel to the bottom surface EG of the body is d. The
inlet velocity and temperature of the ¯uid are constant
and equal to v0 and T0, respectively. The body is main-

tained at temperature Tb, which is higher than T0: In-
itially �t � 0�, the body is stationary and the ¯uid is
¯owing steadily. As the time t > 0, the body starts to

move upward with a constant velocity vb, which is
opposite to the direction of the ¯owing ¯uid. The
behavior of the body and ¯uid are then coupled, and
the variation of the ¯ow and thermal ®elds become

time-dependent. As a result, the ALE method is prop-
erly utilized to analyze this problem.
In order to facilitate this problem, the following

assumptions and the dimensionless variables are made:

1. The ¯uid is air and the ¯ow ®eld is two-dimen-
sional, incompressible and laminar.

2. The ¯uid properties are constant and the e�ect of
the gravity is neglected.

3. The no-slip condition is held on the interfaces

between the ¯uid and body.

X � x

i
, Y � y

i
, U � u

v0
, V � v

v0
, V̂ � v̂

v0
,

Vb � vb

v0
, P � pÿ p1

rv 20
, t � tv0

i
,

y � Tÿ T0

Tb ÿ T0
, Re � v0i

n
, Pr � n

a
:

�1�

Based on the above assumptions and dimensionless
variables, the dimensionless ALE governing equations

[3±5,9,10] are expressed as the following equations:

continuity equation

@U

@X
� @V
@Y
� 0, �2�

momentum equations

@U

@t
�U

@U

@X
�
ÿ
Vÿ V̂

�@U
@Y

� ÿ@P
@X
� 1

Re

�
@ 2U

@X 2
� @ 2U

@Y 2

�
, �3�

@V

@t
�U

@V

@X
�
ÿ
Vÿ V̂

�@V
@Y

� ÿ@P
@Y
� 1

Re

�
@ 2V

@X 2
� @ 2V

@Y 2

�
, �4�

energy equation

@y
@t
�U

@y
@X
�
ÿ
Vÿ V̂

� @y
@Y

� 1

PrRe

�
@ 2y
@X 2

� @ 2y
@Y 2

�
: �5�

As the time t > 0, the boundary conditions are as
follows:

on the surfaces AB and CD

U � V � 0, @y=@X � 0, �6�
on the surface BD (excluding the points B and D )

U � 0, V � ÿ1, y � 0, �7�
on the surface AC (excluding the points A and C )

@U=@Y � @V=@Y � @y=@Y � 0, �8�
on the interfaces EF, FH, EG and GH between the
¯uid and body

U � 0, V � Vb, y � 1: �9�

3. Numerical method

A Galerkin ®nite element method and a backward
di�erence scheme, dealing with the time terms, are

adopted to solve the governing Eqs. (2)±(5). A penalty
function model [16] and Newton±Raphson iteration al-
gorithm are employed to handle the pressure and non-Fig. 1. Physical model.
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linear terms in the momentum equations, respectively.
The velocity and temperature terms are expressed as

quadrilateral and nine-node quadratic isoparametric
elements, and the shape function Ni �i � 1±9� [17] is
utilized as the weighing function. The discretization

process of the governing equations is similar to the
one used in Ref. [18]. Then, the momentum Eqs. (3)
and (4) can be expressed as the following matrix form:

Xne

1

ÿ
�A��e���K��e��l�L��e�

�
fqg�e�t�Dt�

Xne

1

�
f
	�e�

, �10�

where�
fqg�e�t�Dt

�T
� hU1, U2, . . . , U9, V1, V2, . . . , V9im�1t�Dt,

�11�
�A��e� includes the mth iteration values of U and V at

time t� Dt,
�K ��e� includes the shape function, V̂ and time di�er-

ential terms,

�L��e� includes the penalty function terms,
ff g�e� includes the known values of U and V at time

t and mth iteration values of U and V at time t� Dt:
The energy equation (5) can be expressed as the fol-

lowing matrix form:

Xne

1

ÿ
�M��e���Z��e�

�
fcg�e�t�Dt�

Xne

1

frg�e�, �12�

where�
fcg�e�t�Dt

�T
� hy1, y2, . . . , y9it�Dt, �13�

�M ��e� includes the values of U and V at time
t� Dt,
�Z ��e� includes the shape function, V̂ and time di�er-

ential terms,
frg�e� includes the known values of y at time t:
In Eqs. (10) and (12), Gaussian quadrature pro-

cedure are conveniently used to execute numerical inte-
gration. The terms which include the penalty

parameter, l, are integrated by 2� 2 Gaussian quadra-
ture, and the other terms are integrated by 3� 3 Gaus-
sian quadrature. The value of penalty parameter l
used in this study is 106. The frontal method is utilized

to solve Eqs. (10) and (12).
For the boundary conditions to be satis®ed at the

inlet and outlet of the computational domain as shown

in Fig. 1, the displacement of the body must be limited
so as not to disturb the boundary conditions men-
tioned above.

As for the mesh velocities, they are linearly distribu-
ted and inversely proportional to the distance between
the node of the computational meshes and the body.

The mesh velocities near the body are faster than those
near the boundaries of the computational domain.

Moreover, the magnitude of the boundary layer thick-
ness on the body surface is extremely small and can be
estimated by Reÿ1=2 [19]. For avoiding the compu-

tational nodes in the vicinity of the body to slip away
from the boundary layer, the mesh velocities adjacent
to the body are expediently assigned to be equal to the

velocity of the body.
A brief outline of the solution procedure is described

as follows:

1. Determine the optimal mesh distribution and num-
ber of the elements and nodes.

2. Solve the values of the U, V and y at the steady

state and regard them as the initial values.
3. Determine the time increment Dt and the mesh vel-

ocities of the computational meshes.
4. Update the coordinates of the nodes and examine

the determinant of the Jacobian transformation
matrix and ensure the one-to-one mapping to be
satis®ed during the Gaussian quadrature numerical

integration. Execute the mesh reconstruction as the
deformation of the meshes a�ects the accuracy of
the results.

5. Use the numerical method mentioned above to
solve Eq. (10) until the following criterion for con-
vergence are satis®ed:�����fm�1 ÿ fm

fm�1

�����
t�Dt

< 10ÿ3, where f � U, V, �14�

and substitute the U and V into Eq. (12) to obtain
y:

6. Continue the next time step, calculate until the

assigned time is reached.

4. Results and discussion

The working ¯uid is air with Pr � 0:71: For match-
ing the boundary conditions at the inlet and outlet of
the channel mentioned earlier, at the time t � 0:0 the

dimensionless lengths of H �� h
i � and D �� d

i � are
determined by the numerical tests and equal to 31 and
20, respectively. The dimensionless width W �� w

i � of
the channel is 10.
The local Nusselt number NuX and the average local

Nusselt number NuX on the top surface (FH ) or the

bottom surface (EG ) of the body at the time t are
de®ned as follows.

NuX � ÿ @y
@Y

, �15�
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NuX � 1

L

�L
0

NuX dX: �16�

The local Nusselt number NuY and the average local
Nusselt number NuY on the lateral surface (EF or

GH ) of the body at the time t are de®ned as follows.

NuY � ÿ @y
@X

, �17�

NuY � 1

L

�L
0

NuY dY: �18�

The average global Nusselt number Nu on the surfaces
of the body at the time t is de®ned as

Nu � 1

4L

��
FH

NuX dX�
�
EG

NuX dX

�
�
EF�GH

NuY dY

�
: �19�

The mean global Nusselt number Nu for the duration
of the transient development on the surface of the

body is de®ned as

Nu � 1

t

�t
0

Nu dt: �20�

In order to obtain the optimal mesh, the nonuniform

distribution elements of 1872, 2672 and 3904 (corre-
sponding to 7720, 10,952 and 15,944 nodes, respect-
ively) are used for grid tests at steady state and

Re � 500 situation. The distribution of U, V and y
along the line MN as shown in Fig. 1 are indicated in
Fig. 2. According to the results of the grid tests, the
computational mesh with 3904 elements is adopted. As

for the selection of time step Dt, four di�erent time
steps of 0.01, 0.005, 0.0025, 0.001 with Re � 500 and
the moving velocity of the body Vb � 2:0 are adopted,

and the results are shown in Fig. 3. The variation of
the average local Nusselt numbers with time on each
surface of the body are consistent for the above di�er-

Fig. 3. Comparison of the variation of the average local Nus-

selt numbers on each surface of the body with di�erent time

steps Dt for Re � 500 and Vb � 2:0:

Fig. 2. Comparison of the variation of the U, V and y distri-

butions along the line MN at steady state and Re � 500 for

various meshes.
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ent time steps, and the time step of 0.005 is chosen. In
addition, the dimensionless time duration of the transi-

ent development is 1.0.
To limit the contents of the study, the ¯ow and heat

transfer mechanisms are mainly focused on the Vb �
0:5 and 2.0, and Re � 500 situations. To illustrate the
¯ow and thermal ®elds more clearly, only the phenom-
ena in the vicinity of the body are presented.

Shown in Fig. 4 is the transient development of the
velocity vectors around the body for the Vb � 0:5 case.
Recirculation zones in the vicinity of the bottom sur-

face of the body and reverse ¯ow zones near the lateral
surface of the body are observed apparently at the
steady state �t � 0:0�: At the beginning of the transient
state, the body moves upward and pushes the ¯uids

near the top surface of the body, and this ¯uid ¯ows
upward and the direction of this motion is opposite to
that of the inlet ¯uid, where the ¯ow direction is

downward. As a result, the upward and downward
¯ows become opposing ¯ows. Since the magnitude of
the inlet ¯uid is larger, the upward ¯uid motion men-

tioned above is de¯ected and becomes a downward
¯ow in a short distance away from the body.
As for the ¯uid near the bottom surface of the body,

the ¯ow impinges the bottom surface and turns the
¯ow direction to the lateral sides at the steady state as
shown in Fig. 4(a). The ¯uid near the bottom surface
of the body is continuously replenished from both the

bottom and lateral sides as the body moves upward.
The velocities of the ¯uid close to the bottom surface
are usually smaller than the moving velocity of the

body, and new recirculation zones are formed around
the corners of the bottom surface. Consequently, the

situation where the ¯uid impinges on the bottom sur-
face at the steady state no longer occurs, which is dis-
advantageous to the heat transfer.

As for the behavior of the ¯uid near the lateral sur-
face of the body, a slight reverse ¯ow is observed
along the lateral surface at the steady state. As the

body begins to move upward, a new recirculation zone
is formed near the upper corner of the lateral surface
due to the interaction of the body moving upward and

the ¯uid ¯owing downward, and a reattachment region
exists on the lateral surface. Further, the recirculation
zone gradually grows larger and stronger and moves
from the upper to the lower corners of the lateral sur-

face. In the meantime, the ¯uid adhering to the lateral
surface ¯ows with the lateral surface; the ¯ow direction
of the ¯uid near the lateral is upward. The ¯uid near

the low corner of the lateral surface replenishes the
vacant space near the bottom surface induced by the
movement of the body, and the ¯ow directions of this

¯uid becomes downward and di�er from those at the
steady state mentioned above.
The transient development of the isothermal lines

around the body for the Vb � 0:5 case is shown in
Fig. 5. The variation of the thermal ®elds usually cor-
responds to the variation of the velocity ®elds. The dis-
tribution of the isothermal lines is dense near the top

surface of the body due to the collision of the upward
and downward ¯ows mentioned above. This ¯ow turns
near the corners of the top surface and the distribution

Fig. 5. The transient development of the isothermal lines

around the body for Re � 500 and Vb � 0:5 case (a) t � 0:0,
(b) t � 0:05, (c) t � 0:5, (d) t � 1:0:

Fig. 4. The transient development of the velocity vectors

around the body for Re � 500 and Vb � 0:5 case (a) t � 0:0,
(b) t � 0:05, (c) t � 0:5, (d) t � 1:0:
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of the isothermal lines becomes denser near the corner
regions. During the duration of the motion, the distri-

bution of the isothermal lines near the top surface is
still denser than those near the other surfaces. Most of
the ¯uid behind the body does not catch up to the bot-

tom surface due to the movement of the body and the
density of the isothermal lines becomes sparse. The
recirculation zones that exist near the corners of the

bottom surface cause the isothermal lines to extend
outside. The ¯uid in the neighborhood of the lateral
surface ¯ow with the movement of the lateral surface,

which is similar to the ¯uid ¯owing through a plate.
Therefore, the distribution of the isothermal lines close
to the lateral surface is denser than those near the bot-
tom surface.

The results of the transient development of the local
Nusselt number NuX and NuY on the surfaces of the
body for the Vb � 0:5 case are indicated in Figs. 6 and

7, respectively. The solid and dashed lines in Fig. 6 in-
dicate the results of the top and bottom surfaces, re-
spectively. The opposing ¯ow mentioned earlier is

similar to an impinging ¯ow that enhances the heat
transfer rate on the top surface doubtlessly, the local
Nusselt numbers distributions on the top surface then

increase with the increment of time. On the other side,
the ¯ow no longer impinges on the bottom surface and
the recirculation zones appear near the corners of the
bottom surface, which causes the distribution of the

local Nusselt numbers on the bottom surface at the

steady state to be larger than those of the transient
development.

In Fig. 7, the results of the local Nusselt number
NuY on the lateral surface are shown. At the steady
state (Fig. 7(a)), the situation is similar to the ¯uid

¯owing through a plate with ®nite length, and the
larger local Nusselt numbers are distributed on the
upper and lower edges of the lateral surface and

the smaller local Nusselt numbers are distributed on
the central region. As the body starts to move, the
upstream ¯uid has higher downward velocities and

¯ow over the upper edge of the lateral surface as
shown in Fig. 4. This motion decelerates the upward
velocities of the ¯uid, which are close to the lateral sur-
face. Consequently, in the early stages the enhance-

ment of the local Nusselt numbers on the lateral
surface induced by the upward movement of the body
is not so apparent. The enhancement regions near the

lateral surface change from the upper to the lower
regions of the lateral surface due to the variation of
the recirculation zones and reattachment regions and

gradually become apparent.
The transient development of the average local Nus-

selt number NuX and NuY on the surfaces of the body

for the Vb � 0:5 case are indicated in Fig. 8. Based
upon the reasons mentioned earlier, the average local
Nusselt numbers distributed on the top and lateral sur-
faces under the transient development are enhanced,

and the maximum magnitudes of the enhancement are
about 25% and 175%, respectively. Conversely, the
average local Nusselt numbers distributed on the bot-

Fig. 7. The transient development of the local Nusselt num-

bers NuY on the lateral surface of the body for Re � 500 and

Vb � 0:5 case (a) t � 0:0, (b) t � 0:05, (c) t � 0:5, (d) t � 1:0:

Fig. 6. The transient development of the local Nusselt num-

bers NuX on the top and bottom surfaces for Re � 500 and

Vb � 0:5 case (a) t � 0:0, (b) t � 0:05, (c) t � 0:5, (d) t � 1:0:
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tom surface under the transient developments are
decreased, and the maximum magnitude of the decre-

ment is about 33%.
The transient development of the average global

Nusselt number Nu of the body for the Vb � 0:5 case

is shown in Fig. 9. The average global Nusselt num-
bers of the body under the transient development are
larger than that at the steady state, and the maximum

magnitude of the enhancement is about 50%. The
mean increments of the average global Nusselt num-
bers are about 20%.

Shown in Fig. 10 is the transient development of the
velocity vectors around the body for the Vb � 2:0 case.
Since the moving velocity of the body Vb �� 2:0� is
greater than that of the above case �Vb � 0:5), the vari-

ation of the ¯ow ®elds near the body is more drastic in
this case. The ¯ow ®eld near the top surface of the

body in this case is similar to that of the Vb � 0:5
case. As for the ¯uid near the bottom surface of the

body, recirculation zones are formed around the cor-
ners of the bottom surface at ®rst, and the recircula-
tion zones grow larger. After that, most of the ¯uid

that ®lls the vacant space induced by the movement of
the body are provided from the region behind the
body, which is like the situation of the ¯ow impinging

on the bottom surface. As a result, the recirculation
zones vanish, and the phenomena are di�erent from
those of the above case as shown in Fig. 4; this is an

advantage to the heat transfer mechanism. Concerning
the ¯uid near the lateral surface of the body, the beha-
vior of the ¯uid is similar to but more drastic than
that of the above case.

The transient development of the average local Nus-
selt number NuX or NuY for the Vb � 2:0 case are indi-
cated in Fig. 11. According to the reasons mentioned

earlier, the variation of the average local Nusselt num-
bers on the top surface is similar to that of the case of
Vb � 0:5: On the bottom surface, the average local

Nusselt numbers distributed on the bottom surface
decrease with time in the initial duration since the ¯uid
cannot catch up to the central region of the bottom

surface and the recirculation zones are formed around
the corners of the bottom surface. As the time
increases, the recirculation zones around the corners of
the bottom surface vanish, and the average local Nus-

selt numbers distributed on the bottom surface then
increase a little. As for the lateral surface, the average

Fig. 8. The transient development of the average local Nusselt

numbers on the surfaces of the body for Re � 500 and

Vb � 0:5 case.

Fig. 9. The transient development of the average global Nus-

selt number of the body for Re � 500 and Vb � 0:5 case.

Fig. 10. The transient development of the velocity vectors

around the body for Re � 500 and Vb � 2:0 case (a) t � 0:0,
(b) t � 0:25, (c) t � 0:5, (d) t � 1:0:
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local Nusselt numbers are increased at the beginning

of the motion. For times t is larger than 0.5, the ¯uid

near the lateral surface ¯ow with the lateral surface

and the reattachment region is destroyed, which causes

the average local Nusselt numbers to decrease.

The variation of the average global Nusselt number

Nu of the body for the Vb � 2:0 case is shown in

Fig. 12. The increment of the average local Nusselt

numbers on the top and lateral surfaces are large

which cause the average global Nusselt numbers during

the transient development to be larger than those at

the steady state. The mean increment of the average

global Nusselt number is about 140%, which is larger

than that of the Vb � 0:5 case.

Several di�erent Reynolds numbers and the moving

velocities of the body are taken into consideration in

determining the relationship among the three variables

of the mean global Nusselt number Nu, Reynolds

number Re and the moving velocity of the body Vb for

the duration of the transient development. The results
are shown in Fig. 13. The relationship between the
mean global Nusselt number Nu and Re1=2 V1=2

b can be

correlated by an equation of

Nu � 0:664�Re Vb �1=2ÿ1:34: �21�

5. Conclusions

The heat transfer rate of a body moving in oppo-
sition to a ¯owing ¯uid is studied numerically. Some
conclusions are summarized as follows:

1. The ¯uid near the bottom and lateral surfaces of the
body simultaneously replenish the vacant space
induced by the movement of the body, and new
recirculation zones are formed near the corners of

the bottom and lateral surfaces of the body. These
phenomena are apparently di�erent from those of
the body ®xed in the ¯owing ¯uids.

2. The enhancement of the heat transfer rate of a body
moving in opposition to a ¯owing ¯uid is remark-
able.

3. The relationship between the mean global Nusselt
number Nu of the body and Re1=2 V1=2

b is linear.
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Fig. 11. The transient development of the average local Nus-

selt numbers on the surfaces of the body for Re � 500 and

Vb � 2:0 case.

Fig. 12. The transient development of the average global Nus-

selt number of the body for Re � 500 and Vb � 2:0 case.

Fig. 13. The relationship between the mean global Nusselt

number Nu and Re1=2 V1=2
b :
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